L^r -Helmholtz-Weyl decomposition in 3D exterior domains and its application to the Navier-Stokes equations

Hideo Kozono

Waseda University & Tohoku University Tokyo & Sendai kozono@waseda.jp,hideokozono@tohoku.ac.jp

First, we show that in 3D exterior domains Ω with the compact smooth boundary $\partial \Omega$, two spaces $X_{har}^r(\Omega)$ and $V_{har}^r(\Omega)$ of L^r -harmonic vector fields \boldsymbol{h} with $\boldsymbol{h} \cdot \boldsymbol{\nu}|_{\partial\Omega} = 0$ and $\boldsymbol{h} \times \boldsymbol{\nu}|_{\partial\Omega} = 0$ are both of finite dimensions, where $\boldsymbol{\nu}$ denotes the unit outward normal to $\partial \Omega$. Next, we prove that for every L^r vector field \boldsymbol{u} in Ω , there exist $\boldsymbol{h} \in X_{har}^r(\Omega)$, $\boldsymbol{w} \in \dot{H}^{1,r}(\Omega)^3$ with div $\boldsymbol{w} = 0$ and $p \in \dot{H}^{1,r}(\Omega)$ such that \boldsymbol{u} is uniquely decomposed as

$\boldsymbol{u} = \boldsymbol{h} + \operatorname{rot} \boldsymbol{w} + \nabla p.$

On the other hand, if for the given L^r -vector field \boldsymbol{u} we choose its harmonic part \boldsymbol{h} from $V_{\text{har}}^r(\Omega)$, then we have a similar decomposition to above, while the unique expression of \boldsymbol{u} holds only for 1 < r < 3. Furthermore, the choice of p in $\dot{H}^{1,r}(\Omega)$ is determined in accordance with the threshold r = 3/2.

In particular, we consider an exterior domain $\Omega \subset \mathbb{R}^3$ having compact boundary $\partial \Omega = \bigcup_{j=1}^{L} \Gamma_j$, where $\Gamma_1, \dots, \Gamma_L$ are L disjoint smooth closed surfaces. As an application of our L^r -decomposition of vector fields, we prove the existence of weak solutions \boldsymbol{v} of the stationary Navier-Stokes equations in Ω satisfying $\boldsymbol{v}|_{\Gamma_j} = \boldsymbol{\beta}_j$, $j = 1, \dots, L$ and $\boldsymbol{v} \to \mathbf{0}$ as $|\boldsymbol{x}| \to \infty$, where $\boldsymbol{\beta}_j$, $j = 1, \dots, L$ are the given boundary data.

Our results are based on the joint work with Matthias Hieber, Anton Seyferd(TU Darmstadt), Senjo Shimizu(Kyoto Univ.) and Taku Yanagi-sawa(Nara Women Univ.).

References

[1] Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T., A characterization of harmonic Lr-vector fields in three dimensional exterior domains. J. Geom. Anal. **32** (2022), no. 7, Paper No. 206, 26 pp.

[2] Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T., L^r-Helmholtz-Weyl decomposition for three dimensional exterior domains. J. Funct. Anal. **281** (2021), no. 8, Paper No. 109144, 52 pp.

[3] Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T., Stationary Navier-Stokes equations under inhomogeneous boundary conditions in 3D exterior domains. Calc. Var. Partial Differential Equations **60** (2021), no. 5, Paper No. 180, 14 pp.