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In statistical learning theory we design models for estimation and ap-
proximation of stochastic functional dependencies between empirical data
[1], [5], [6], [9], [10]. In classical learning theory, the generalization ability
of a learning model can be formulated in terms of concentration-of-measure
inequalities. In my talk, I shall propose categorical and geometric methods,
developing methods in [4], [7], [8], and utilizing the convergence in outer
probability, which has been employed in the study of empirical processes [3],
for proving the generalization ability of supervised learning models on Polish
subspaces of Rn. Our new results make precise and extend previous works
due to Cucker-Smale [1] and Vapnik [9], which concern a class of supervised
learning models. I shall discuss the relation of the obtained results with
the open problem of the generalization ability of neural networks, which has
been raised and discussed in [2]. A part of my talk is based on my e-print [5].
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